

LES FILIERES ENERGETIQUES

×

Institut Régional de Biologie et Médecine du Sport

Dr Frédéric MATON
www.irbms.com
Medecine du Sport
Asigne และ คราคาการ์
dans le Sport et la Santé

3 SYSTEMES ENERGETIQUES

Caractéristiques

Sports concernés

Facteurs de performances

Méthodes d'exploration

3 SYSTEMES ENERGETIQUES

ANAEROBIE ALACTIQUE

ANAEROBIE LACTIQUE

AEROBIE

Métabolisme anaérobie alactique

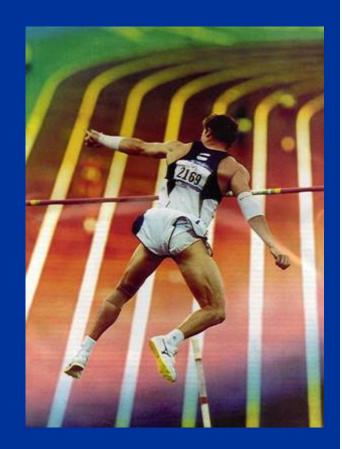
Phosphocréatine + ADP < Créatine + ATP

Caractéristiques

➤ Délai : Immédiat !

Réserves : Musculaires faibles

✗ Facteurs limitants: Puissance max Pmax_{ana}


✗ Récupération : Phosphocréatine → rapide

Système aérobie

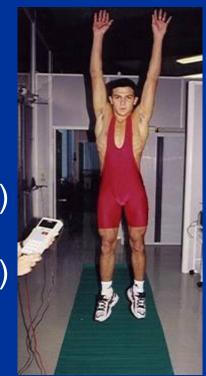
Sports de puissance, vitesse, force Sprint, lancers, sauts

▼ Types d'entraînements

Séries courtes → 10/10 10/5 15/5

Récup courtes – FC élevée (FCmax atteinte)

▼ Tests de terrain

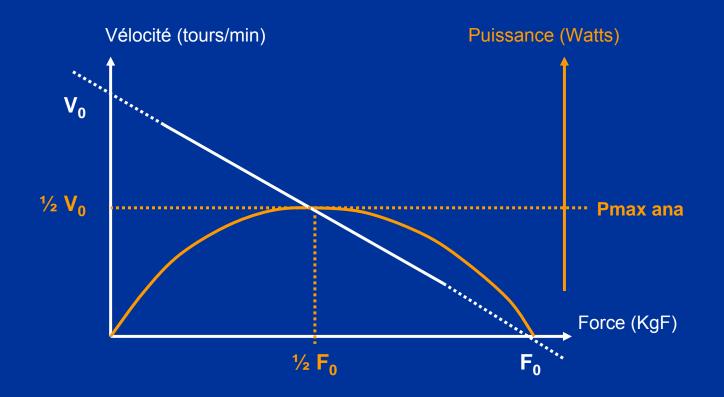

Détente verticale

Pmax _{ana} = 21,7 x P (kg) x
$$\sqrt{H}$$
 (m)

Pmax _{ana} = 2,21 x P (kg) x
$$\sqrt{H}$$
 (m)

Bon test > 60cm

Célérométrie – Escaliers de Margaria

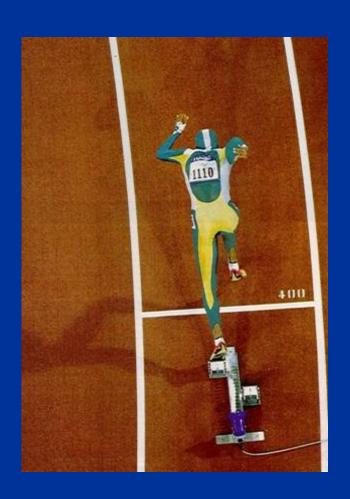


$$P_{\text{max}} = \frac{9,81 \times M \times H}{T}$$

IRBMS www.irbms.com

- Mesures par dynamomètres
- Test Force Vitesse

Sur cycloergométre: Courtes accélérations maximales contre différentes forces de freinage $P_{max} = 0.25 \times V_0 F_0$



■ Adaptations nutritionnelles

Hydratation – Acides Aminés Créatine ??

Système cardiovasculaire
Répercutions comportementales

ANAEROBIE LACTIQUE ANAEROBIE LACTIQUE AEROBIE

Métabolisme anaérobie lactique

Glucose + ADP < Ac Pyruvique < Lactate + ATP

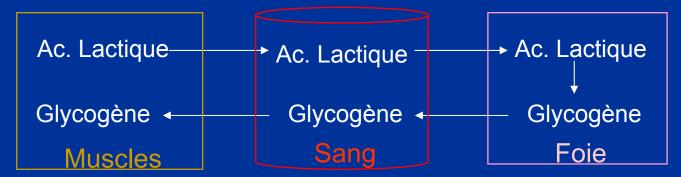
Caractéristiques

➤ Délai : 15sec à 1min30

Réserves : Glycogène musculaire

Facteurs limitants: Puissance max Pmaxana

Récupération : Lactate > facilité d'élimination


Système aérobie

☑ Transformation de l'acide lactique

Oxydation

Système Tampon ventilatoire

Ac. Lactique
$$(H^+)$$
 $H_2O + CO_2$ Bicarbonate HCO_3^-

Accumulation

Athlétisme 400m, natation 200m ...

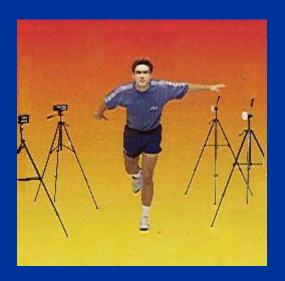
Sports de combat (judo lutte...)

▼ Types d'entraînements

Interval Training → 1min/1min

Objectifs:

□ lactate produit -


¬ tolérance

▼ Tests de terrain

Test de vitesse

Dosages de lactatémies

- Test Force Vitesse
- Test de Wingate

Sur cycloergométre: Pédalage maximal contre une force de freinage constante

Pmax
$$_{ana} = V_{max} x F x L$$

F= force de freinage (N) (50g/kg) L = développement de l'ergométre (m)

■ Adaptations nutritionnelles

Hydratation alcaline Réserves glycogéniques

☑ Effets sur la santé

Sollicitations cardiovasculaires Sollicitations ostéo articulaires Répercutions comportementales

ANAEROBIE ALACTIQUE ANAEROBIE LACTIQUE AEROBIE

Métabolisme aérobie

Glucose + ADP +
$$O_2 \Leftrightarrow$$
 Ac Pyruvique \Longrightarrow $H_2O + CO_2 + ATP$

Caractéristiques

Délai : Quelques minutes

Réserves : Glycogène - Acides Gras

➤ Facteurs limitants: VO₂max PMA VMA

La plus grande quantité d'O₂ que le sportif est capable de prélever, transporter, consommer.

Puissance Maximale Aérobie PMA Vitesse Maximale Aérobie VMA

Récupération : lente

Sports d'endurance Marathon, Cyclisme, Triathlon ...

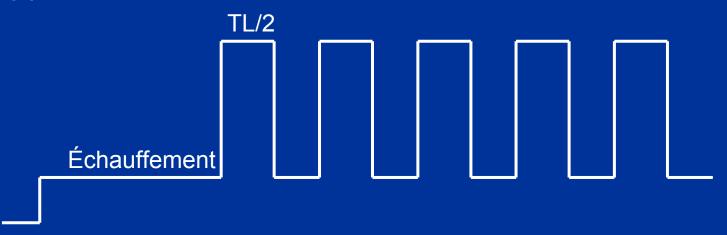
Endurance foncière → séances longues

VO₂max VMA PMA → Séries courtes à FCmax / PMA

10x(30sec30sec) 10x(1min/1min) 5x(2min/2min)

▼ Tests de terrain

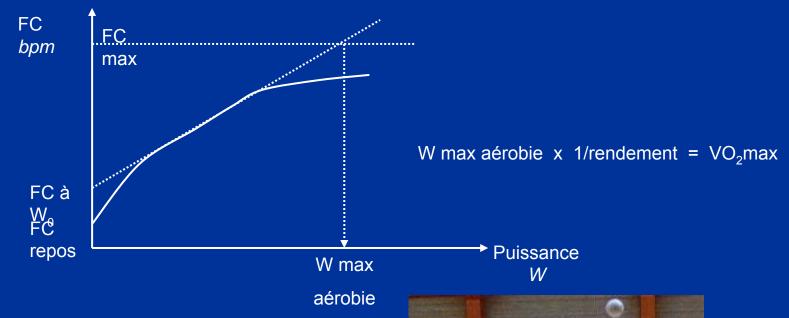
- Test de Cooper
 La plus grande distance parcourue en 12min
 VO₂max = 22,351 Distance (km) 11,28
- Test de Luc Léger
 Plusieurs allers-retours de 20m
 VO₂max = 5,86 Vitesse (km/h) 19,46
- Test de Léger Boucher
 Sur piste, vitesse imposée par passage de plots espacés de 50m
 VO₂max = 3,5 Vitesse



▼ Tests de terrain

Détermination du temps limite
 VMA déterminée par test de terrain (Léger)

Applications à l'entraînement



➤ Test d'évaluation indirecte de la VO₂max

➤ Test d'évaluation directe de la VO₂max

Test progressif sur ergomètre adapté

Vélo → Cycloergomètre

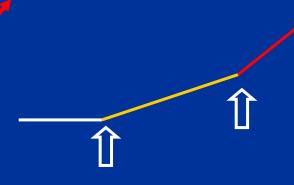
Cap → Tapis

➤ Test d'évaluation directe de la VO₂max

Paramètres mesurés ?

- cardiovasculairesFC ... FC max

 - Pression artérielle TA


- ✗ Test d'évaluation directe de la VO₂max
- Paramètres respiratoires
 - Volumes ventilés VE
 - Fréquences respiratoires FR
 - Echanges gazeux VO₂ ... VO₂ max VCO₂

$$\frac{\text{VCO}_2}{\text{VO}_2} \rightarrow \text{QR} \qquad \frac{\text{VE}}{\text{VO}_2} \rightarrow \text{EQ}$$

Evolution à l'effort

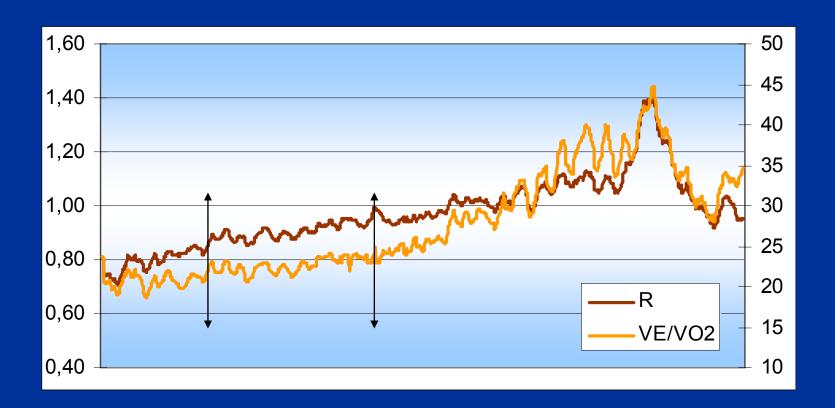
QR

- ▼ Test d'évaluation directe de la VO₂max
- Exemple

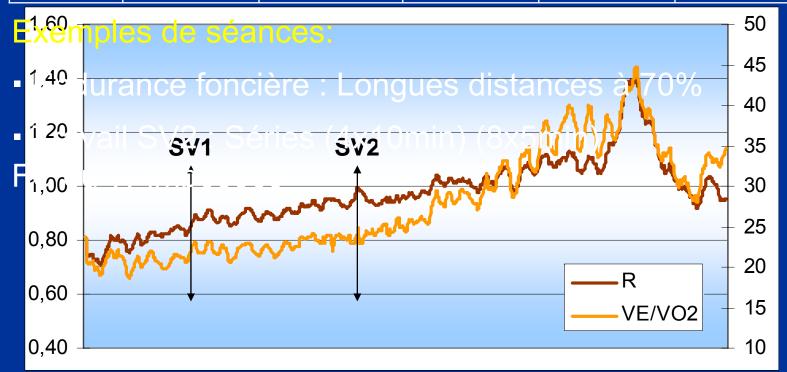
Mickael PYNSON (21ans - 1,80m - 72kg)

- VE = 160 L/min
- FCmax = 195 W
- Pmax = 375 W

- FV = 52 Cy/min
- VO_2 max = 58 ml/kg/min
- PMA = 350 W



- ➤ Test d'évaluation directe de la VO₂max
- Exemple



- ➤ Test d'évaluation directe de la VO₂max
- Applications à l'entraînement

	Palier	FC	%FCmax	VO ₂	%VO ₂ max
SV1	150	122	62 %	33	57 %
SV2	250	158	81 %	48	82 %
	200	135/140	70/73 %	40/41	70 %

- ➤ Test d'évaluation directe de la VO₂max
- Prédiction de performances

Psv₂ → Perf sur 40km

Hopkins et McKenzie 1994

VO₂ max → Perf sur (semi)marathon

■ Adaptations nutritionnelles

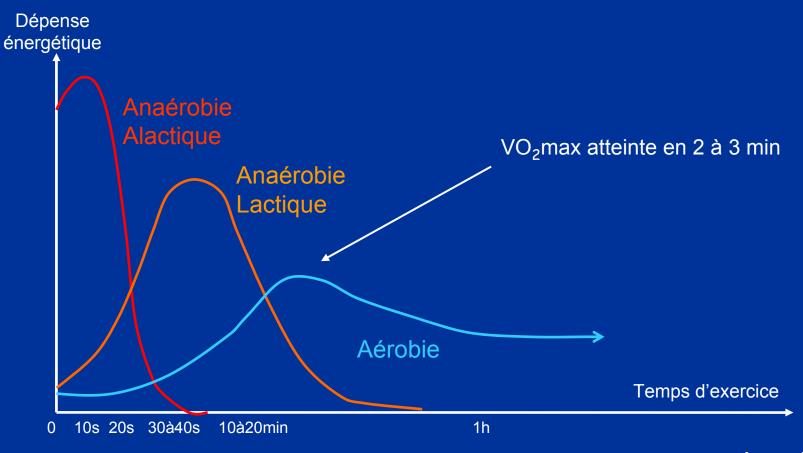
Hydratation - Réserves glycogéniques – Statut minéraux

et vitamines – Fer ...

Prévention et traitement maladies cardiovasculaires Prévention du vieillissement ostéo articulaires

CONCLUSION

Composante « énergétique » dont dépend l'entraînement


Travail spécifique d'une « qualité » physique

Qualité et efficacité des entraînements

☑ Temps d'entraînement

Répartition selon l'effort !

Astrand et Rodahl, 1977

Documentation

PLUS D'INFO!..

Evaluez votre VO₂max !..

@ conseil ...

QUESTIONS